



| 1  | The International Satellite Cloud Climatology Project                                                                                                        |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | H-Series Climate Data Record Product                                                                                                                         |
| 3  |                                                                                                                                                              |
| 4  | Alisa H. Young <sup>1</sup> , Kenneth R. Knapp <sup>2</sup> , Anand Inamdar <sup>3</sup> , William Hankins <sup>2,4</sup> and William B. Rossow <sup>5</sup> |
| 5  |                                                                                                                                                              |
| 6  | <sup>1</sup> NOAA's National Centers for Environmental Information, 325 S. Broadway, Boulder CO 80305                                                        |
| 7  | <sup>2</sup> NOAA's National Centers for Environmental Information, 151 Patton Ave, Asheville NC, 28801                                                      |
| 8  | <sup>3</sup> Cooperative Institute for Climate and Satellites, North Carolina State University                                                               |
| 9  | <sup>4</sup> ERT, Inc., Asheville, North Carolina, 28801                                                                                                     |
| 10 | <sup>5</sup> NOAA/CREST, City College of the City University of New York, New York, New York 10031                                                           |
| 11 |                                                                                                                                                              |
| 12 |                                                                                                                                                              |
| 13 | Correspondence to: A. H. Young (alisa.young@noaa.gov)                                                                                                        |
| 14 |                                                                                                                                                              |
|    |                                                                                                                                                              |





17

#### 16 Abstract

- This paper describes the new global long-term, International Satellite Cloud Climatology Project 18 (ISCCP) H-Series climate data record (CDR). The H-Series data contains a suite of level 2 and 19 level 3 products for monitoring the distribution and variation of cloud and surface properties to 20 better understand the effects of clouds on climate, the radiation budget, and the global 21 hydrologic cycle. This product is currently available for public use and is derived from both 22 geostationary and polar orbiting satellite imaging radiometers with common visible and 23 infrared (IR) channels. The H-Series data spans from July 1983 to Dec 2009 with plans for 24 continued production to extend the record to the present with regular updates. The H-series 25 data are the longest combined geostationary and polar orbiter satellite based CDR of cloud 26 properties. Access to the data is provided in network Common Data Form (netCDF) and 27 archived by NOAA's National Centers for Environmental Information (NCEI) under the satellite 28 Climate Data Record Program ( https://doi.org/10.7289/V5QZ2815). The basic characteristics, 29 history, and evolution of the dataset are presented herein with particular emphasis on and 30 discussion of product changes between the H-Series and the widely used predecessor D-Series 31 product which also spans from July 1983 through December 2009. Key refinements included in
- 32 the ISCCP H-Series CDR are based on improved quality control measures, modified ancillary
- 33 inputs, higher spatial resolution input and output products, calibration refinements, and
- 34 updated documentation and metadata to bring the H-Series product into compliance with
- 35 existing standards for climate data records.
- 36





### 37 **1.** Introduction

38 The International Satellite and Cloud Climatology Project (ISCCP) was established in 1982. Its 39 intent was to produce a global, reduced resolution, calibrated infrared and visible radiance 40 dataset with basic information on surface and atmospheric radiative properties and to derive 41 global cloud characteristics from satellite data (Schiffer and Rossow, 1983). Today, ISCCP is the 42 longest running international satellite-based global environmental data project. It delivers a 30+ 43 year record of global cloud and surface radiative properties obtained from radiance images 44 from the complementary geostationary and polar orbiting satellites. As a mark of the dataset's 45 value, it has been cited in more than 15,000 articles with Rossow and Schiffer (1999), receiving 46 over 1800 citations (Fig.1). This achievement can be attributed to the precedent set by the 47 World Climate Research Program which aided ISCCP in establishing international collaborations 48 to obtain, process, distribute, and archive data from U.S. and non-U.S. operated geostationary 49 and polar imaging satellites. The collection of ISCCP applications and analyses demonstrate that 50 ISCCP has made a significant contribution to advancing climate science and assessment. 51 However, the widely used ISCCP D-Series product has not been updated beyond December of 52 2009. In 2008, a large data stewardship effort by the National Climatic Data Center (now 53 known as NCEI) led to the rescue of ISCCP B1 data with 10 km and 3 hourly spatial and temporal 54 resolution (Knapp, 2008). This effort ultimately set the stage for ISCCP B1U (uniformly 55 formatted B1) data to be input to ISCCP processing. The ISCCP algorithm and analysis has 56 gradually matured based on new research results (Rossow, and Schiffer, 1991, 1999) and has been revised again with funding from the NASA MEASURES program and the NOAA Climate 57 58 Data Record program exploiting more recent research results. More importantly the products 59 have also evolved to use higher resolution and improved input data products and to transition 60 the processing to an operational environment at NOAA. 61

In this paper, the updated ISCCP H-Series product is described with specific emphasis on the
 changes in the algorithm and products going from D- (Rossow and Schiffer, 1999) to H-Series
 (ISCCP C-ATBD, 2017) products. The sections below provide a description of the newly
 developed H-Series collection, comparison with its predecessor D-Series product, data access,





- 66 caveats, and plans for future development under the stewardship of NOAA's National Centers
- 67 of Environmental Information (NCEI).
- 68

## 69 2. ISCCP H-Series Processing

- 70 The primary instruments that serve as inputs to the ISCCP analysis are the imaging radiometers
- on operational weather satellites. These include the Advanced Very High Resolution
- 72 Radiometer (AVHRR) on the polar orbiting satellites and a variety of imagers that fly onboard
- 73 the geostationary satellites. ISCCP handles these data using five data processing streams (see
- 74 Figure 2). These streams are labeled by the originating satellites:
- GMS: Japanese Geostationary Meteorological Satellite with a subsatellite longitude of
   ~140°E
- INS: Indian ocean sector coverage with a subsatellite at ~63°E
- MET: European and African sector coverage with a subsatellite longitude of ~0°
- GOE: Eastern United States and South American coverage with a subsatellite longitude
   of 75°W
- GOW: Pacific Ocean and Western United States coverage with a subsatellite longitude of
   135°W
- 83 Two additional streams represent the Polar Orbiter (PO) data:
- NOA: Afternoon polar orbiting satellite stream
- NOM: Morning polar orbiting satellite stream

86 The combination of the geostationary and polar orbiting satellites allows ISCCP to establish an

- 87 intercalibration procedure whereby radiances from imagers onboard the geostationary
- 88 satellites are normalized to the low earth orbit AVHRR radiances from the afternoon polar
- 89 orbiter satellite series. In this approach, NOAA-9 acts as the absolute reference through 2009
- 90 (Rossow and Ferrier, 2015). NOAA-18 now performs this function for 2010 and beyond.
- 91 Although most of the imaging radiometers make measurements of radiation emitted from
- 92 earth at multiple spectral wavelengths, the H-Series ISCCP analysis uses only the visible (VIS  $\approx$
- 93 0.65  $\mu m$  wavelength) and infrared (IR  $\approx$  10.5  $\mu m$  wavelength) "window" channels to derive cloud
- 94 and surface properties. In previous versions of the ISCCP, data products have relied on B3 data





- 95 with 3-hour and 30 km temporal and spatial resolution (Rossow and Schiffer, 1985). The
- 96 primary geostationary input to ISCCP H-Series is B1U data which has 3-hour and ~10 km
- 97 temporal and spatial resolutions. ISCCP ancillary products have also undergone modifications.
- 98 Table 1, shows the details of D- to H-Series changes. In general, the updated input and ancillary
- 99 data products yield a more consistent record for the reprocessing of higher resolution cloud
- 100 products.
- 101

## 102 **3.** ISCCP H-Series Cloud Detection

103 The ISCCP H-series cloud detection algorithm and retrievals are generally minor revisions of the 104 D-Series algorithm and retrievals in four steps. First, tests of the space and time variations of 105 the observed radiances at several scales are used to estimate cloud-free radiances. Results of 106 the space-time tests are used in conjunction with the ancillary products to obtain a global 107 composite of clear sky radiances for each image pixel location and time. Second, cloudy 108 conditions are diagnosed when IR or VIS observed satellite radiances sufficiently deviate from 109 estimated values using various combinations of VIS and IR thresholds (Rossow and Garder 110 1993a, b, Rossow et al. 1993). Third, the properties of the surface are retrieved from the clear-111 sky radiances with the help of ancillary data describing the properties of the atmosphere. 112 Lastly, the properties of clouds are retrieved from the cloudy-sky radiances using the retrieved surface properties and the ancillary atmospheric data (Rossow and Schiffer 1991, 1999). 113 114 115 Differences in the D- and H-Series cloud detection algorithm include the following 116 modifications: (1) added a new radiance space contrast test inside regions of land-water 117 mixtures, (2) updated surface type categories for algorithm tests to improve cloud tests in 118 rough topography, (3) revised daytime cloud detection over snow and ice by eliminating 3.7  $\mu$ m 119 tests since this channel is not available for all AVHRR datasets over the whole period of record 120 and implemented simpler test for reversed VIS radiance contrast situations to improve 121 homogeneity of record, (4) improved summertime polar cloud detection by reducing VIS 122 thresholds over snow and ice, and (5) improved wintertime polar cloud detection by changing 123 marginally cloudy to clear and marginally clear to cloudy. Otherwise, the current H-Version





- 124 (v01r00) of the ISCCP cloud detection algorithm is the same as the D-Version which is a
- 125 modification of the C-Version. Hence, all publications regarding the first two versions of ISCCP
- 126 products are also relevant to the H-Series algorithm.
- 127

128 Likewise the differences in the D- and H-Series surface and cloud retrievals are generally small

- 129 changes in the assumptions in the radiative transfer calculations that they are based on. The
- 130 most notable changes are listed in the next Section.

**ISCCP H-Series Products** 

- 131
- 132 133

4.

# 4.1. H-Series Products

134 The ISCCP D-Series algorithm relied on ISCCP Stage B3 data with spatial and temporal

135 resolutions of 30 km and 3 hours for geostationary satellites. Thus, the highest resolution D-

136 Series data produced was the 30-km 3-hourly product for individual satellites known as DX.

137 Downstream level 3 products included D1 (global and 3 hourly) and D2 (monthly mean)

138 products on an equal area grid with a spatial interval of 280 km (2.5 degree equivalent). In

139 comparison, the ISCCP H-Series products rely on ~10 km and 3 hourly B1U data and polar

140  $\,$  orbiter data sampled to ~10 km intervals. The Level 2 products are HXS and HXG and Level 3  $\,$ 

141 products are HGS, HGG, HGH, and HGM. The products have the following descriptions:

- HXS (H-Series piXel-level by Satellite) provides pixel level results of cloud and surface
   properties retrieved or used in the retrieval for each individual satellite image in nearly
   the original projection for geostationary satellites and for groupings of orbit swaths for
   polar orbiter data in six midlatitude (ascending and descending swaths in 120° longitude
   sectors) and two polar sectors. HXS is like the old DX product.
- HXG (H-Series piXel-level Global) is a global merger of the information from HXS
   common to all satellites and is mapped and provided every 3 hrs on a 0.10-degree equal
   angle grid (~240 files per month).
- HGS (H-SERIES Gridded by Satellite) reduces the HXS Product to the 1-degree-equal
   angle grid with additional statistical and cloud type information, and combines these





| 152 | results with the information from the ancillary data products prior to the global merger.        |
|-----|--------------------------------------------------------------------------------------------------|
| 153 | HGS is like the old DS (which was never released).                                               |
| 154 | HGG (H-Series Gridded Global) is the global merger of the HGS products from all                  |
| 155 | available satellites, where overlapping coverage is resolved in favor of the satellite with      |
| 156 | the best viewing geometry with a preference for geostationary results at lower latitudes         |
| 157 | and polar orbiter results in the polar regions. The time interval is 3 hr and the map grid       |
| 158 | is 1-degree-equal area grid. The HGG product is the H-Series analog to the D1 product            |
| 159 | and should be regarded as the main ISCCP Cloud Product.                                          |
| 160 | • HGH (High-resolution Global Hourly) is the monthly 1 degree-equal area gridded                 |
| 161 | average of the HGG product at each of the eight three hourly times-of-day (00Z, 03Z,             |
| 162 | 06Z, etc.) used in the ISCCP algorithm. This product is like the old D2 product.                 |
| 163 | • HGM (High-resolution Global Monthly) is the average of the eight HGH products for              |
| 164 | each month. This product is like the old D3 product.                                             |
| 165 | All H-Series products, except HXS, are formatted in netCDF-4. Other differences in the D- and H- |
| 166 | Series products include (1) revisions in the COUNTS-to-physical conversion tables to remove      |
| 167 | special values for underflow and overflow (2) increased uncertainty estimate information (3)     |
| 168 | missing observations are filled in the global, 3-hrly product (HGG) instead of the monthly       |
| 169 | product (the HXG product is also filled). A subset of the HGG, HGH, and HGM products are also    |
| 170 | available in a CF-compliant equal angle format known as ISCCP Basic. This product has fewer      |
| 171 | variables and a total volume of 305 GB.                                                          |
| 172 | Other changes between the D-Series and H-Series products include the following:                  |
| 173 | • Radiance Calibrations from D-Version to H-Version: (1) Anchor for VIS calibration              |
| 174 | extended to combined results for NOAA-9 (through 2009) and NOAA-18 (post 2009),                  |
| 175 | spanning the whole record. (2) Overall IR calibration adjusted for small gain error in           |
| 176 | AVHRR calibrations compared to MODIS for all AVHRRs on NOAA-15 et seq (Cao and                   |
| 177 | Heidinger, 2002). (3) Geostationary normalization procedure changed to use all of the            |
| 178 | radiance data directly instead of a small number of special samples – manual                     |
| 179 | procedures eliminated (similar to that used by Inamdar and Knapp, 2015).                         |





| 180 | • VIS and IR Radiance Models from D-Version to H-Version: (1) Replaced ocean VIS                  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------|--|--|--|--|
| 181 | reflectance model with more accurate version that includes a better glint treatment. (2)          |  |  |  |  |
| 182 | Calculated instrument-specific ozone absorption coefficients. (3) Added water vapor               |  |  |  |  |
| 183 | above 300 mb level in atmospheric ancillary data. (4) Added treatment of stratospheric            |  |  |  |  |
| 184 | and tropospheric aerosol scattering and absorption. (5) Improved surface temperature              |  |  |  |  |
| 185 | retrieval by accounting for variations of surface IR emissivity by surface type. (6)              |  |  |  |  |
| 186 | Introduced more explicit atmospheric and cloud vertical structures for cloud retrievals.          |  |  |  |  |
| 187 | (7) Changed specified liquid cloud droplet effective radius from 10 $\mu m$ everywhere to 13      |  |  |  |  |
| 188 | and 15 $\mu m$ over land and ocean, respectively. (8) Changed cloud top temperature value         |  |  |  |  |
| 189 | separating ice and liquid phase clouds from 260 K to 253 K. (9) Updated ice cloud                 |  |  |  |  |
| 190 | scattering phase function to empirically-based model from satellite polarimetry                   |  |  |  |  |
| 191 | observations and revised specified ice particle effective radius from 30 $\mu m$ for all clouds   |  |  |  |  |
| 192 | to 20 and 34 $\mu m$ for clouds with TAU < 3.55 and TAU $\geq$ 3.55, respectively. (10) Corrected |  |  |  |  |
| 193 | placement of thin clouds from just above the tropopause to at the tropopause. (11)                |  |  |  |  |
| 194 | Added treatment of cloud top location when surface temperature inversions are                     |  |  |  |  |
| 195 | present. (12) Updated solar ephemeris.                                                            |  |  |  |  |
| 196 | 4.2. Product Variables                                                                            |  |  |  |  |
| 197 | Beginning with the original C-Series product, ISCCP has delivered an extensive set of product     |  |  |  |  |
| 198 | variables. The cloud properties include (but are not limited to) the following:                   |  |  |  |  |
| 199 | Cloud Amount                                                                                      |  |  |  |  |
| 200 | Cloud Top Temperature, TC (in Kelvins)                                                            |  |  |  |  |
| 201 | Cloud Top Pressure, PC (in mb)                                                                    |  |  |  |  |
| 202 | Cloud Optical Thickness, TAU (unitless)                                                           |  |  |  |  |
| 203 | • Cloud Water Path, CWP (in g/m <sup>2</sup> )                                                    |  |  |  |  |
| 204 | Cloud Phase                                                                                       |  |  |  |  |
| 205 | Cloud Type                                                                                        |  |  |  |  |
| 206 | Surface properties include:                                                                       |  |  |  |  |
| 207 | Surface Temperature, TS (in Kelvins)                                                              |  |  |  |  |
| 208 | Surface Reflectance, RS (unitless)                                                                |  |  |  |  |
|     |                                                                                                   |  |  |  |  |





- 209 Separate procedures are used to produce these data under daytime versus nighttime
- 210 conditions (the nighttime procedure is applied day and night). In the H-Series Basic product
- 211 introduced in Section 4.1 these variables are converted to their physical units. For a more
- 212 detailed list of all ISCCP variables, please refer to the ISCCP Climate-Algorithm Theoretical Basis
- 213 Document.
- 214

#### 215 5. Basic Characterization of the ISSCP H-Series Monthly Cloud Amount

216 Given the higher resolution of the input data used to produce the H-Series products, the H-217 Series data yields improved geospatial results that will particularly enhance the capabilities for 218 long-term regional scale evaluations of cloud characteristics and variations. Some impacts of 219 the higher resolution input products are illustrated in Figure 3 showing the January 2009 220 monthly mean ISCCP Global Cloud Fraction (%) differences between H and D series (a) the H-221 Series HGM product at 1° (b) and the D-Series D2 product at 2.5° (c). As shown in (a) the 222 differences between the products are greatest in the polar and coastal regions where for the 223 case of January 2009 the H-Series product has a slightly lower cloud fraction (cf. 65.46% (H) and 224 66.29% (D)). On average, the differences between the H-and D-Versions of the ISCCP products 225 are similar in magnitude. Differences are present due to the higher resolution input (B1U) data 226 that impacts the assessment of clear/cloudy scenes (which increases the number of scenes with 227 no or total cloud cover), enhanced efforts to gather and/or limit undesirable data from 228 processing/production via QC, and changes in the analysis procedure described in Section 2. 229 230 In addition to the monthly H- and D-Series comparison provided in Figure 3, which gives users a 231 monthly snapshot of the H- and D- series CF differences, Figure 4 provides the comparison of 232 ISCCP H- and D-Series monthly mean cloud fraction (%) for July 1983 through Dec. 2009 for a)

- 233 global, b) land, and c) water. The global mean differences are on average ~0.21% which
- 234 demonstrates that the H-Series product generally captures a slightly higher cloud fraction
- 235 compared to D-Series data. However, H- and D- differences follow a seasonal pattern whereby
- 236 months from November through April on average show that H-Series CF is slightly lower than
- 237 the D-Series product and during May-October, H-Series data CF is slightly higher than the D-





| 238 | Series product: this difference is due mainly to the impact of the algorithm changes over the     |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 239 | polar regions, more significantly over Antarctica. As displayed in Figure 4 b) and c) the monthly |  |  |  |  |  |  |
| 240 | mean land cloud fraction for both H- and D- is generally less than the CF reported for water.     |  |  |  |  |  |  |
| 241 | The land CF also reflects a higher percentage of the global mean differences (0.16%) compared     |  |  |  |  |  |  |
| 242 | to water (-0.06%). Other components of the comparison between H- and D- data reveal that          |  |  |  |  |  |  |
| 243 | the inclusion of MACv1 for the treatment of stratospheric and tropospheric aerosols, which        |  |  |  |  |  |  |
| 244 | were not included in the D-Series product, has a considerable impact on the cloud fraction        |  |  |  |  |  |  |
| 245 | particularly during periods that experience a volcanic eruption. This is shown by the spike in CF |  |  |  |  |  |  |
| 246 | in the summer of 1991 due to the Mount Pinatubo eruption in June of 1991.                         |  |  |  |  |  |  |
| 247 |                                                                                                   |  |  |  |  |  |  |
| 248 | 6. Product Caveats                                                                                |  |  |  |  |  |  |
| 249 | There are some caveats that users should be aware of that primarily involve the absence of        |  |  |  |  |  |  |
| 250 | some data in the initial release of the product.                                                  |  |  |  |  |  |  |
| 251 | The following is a list of issues and caveats users should know.                                  |  |  |  |  |  |  |
| 252 | General notes:                                                                                    |  |  |  |  |  |  |
| 253 | • Calibration D to H - ISCCP H series calibration follows the method and process of               |  |  |  |  |  |  |
| 254 | the ISCCP D series. Any calibration issues present in ISCCP D will also be present                |  |  |  |  |  |  |
| 255 | here. Any analysis of long-term trends in cloud cover addressed using the D-                      |  |  |  |  |  |  |
| 256 | Series data should be considered in any evaluation of the H-Series assessment.                    |  |  |  |  |  |  |
| 257 | <ul> <li>Spatio-temporal series analysis - ISCCP H series cloud algorithm is mostly</li> </ul>    |  |  |  |  |  |  |
| 258 | unchanged. The examination of the geographic distributions of average ISCCP                       |  |  |  |  |  |  |
| 259 | cloud amounts continues to show artifacts in association with large changes in                    |  |  |  |  |  |  |
| 260 | the average value of satellite zenith angle (Rossow and Garder, 1993b).                           |  |  |  |  |  |  |
| 261 | • Satellite coverage - The ISCCP product is limited by the input geostationary                    |  |  |  |  |  |  |
| 262 | datasets. These have gaps in coverage that are large (seen in the <u>Geostationary</u>            |  |  |  |  |  |  |
| 263 | Quilt) and small. The larger gaps are caused by satellite outages, or gaps in the                 |  |  |  |  |  |  |
| 264 | geostationary ring. The smaller gaps can be up to a week in length and occur                      |  |  |  |  |  |  |
| 265 | more often in the early years.                                                                    |  |  |  |  |  |  |
| 266 | Specific issues:                                                                                  |  |  |  |  |  |  |





| 267 | <ul> <li>MET-3 1995 - Many files are missing visible channel.</li> </ul>                             |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------|--|--|--|--|
| 268 | <ul> <li>GMS-3 1986 - Many images in Feb-Apr are missing visible channels.</li> </ul>                |  |  |  |  |
| 269 | $_{\odot}$ The afternoon Polar Orbiter data (NOM) has a 2-year gap from 2000-2002 for the            |  |  |  |  |
| 270 | NOAA-15 to NOAA-17 transition. We have the data and just received status for                         |  |  |  |  |
| 271 | the AVHRR instrument for this period. This will be resolved in future                                |  |  |  |  |
| 272 | reprocessing.                                                                                        |  |  |  |  |
| 273 | <ul> <li>Cloud top pressure errors over Pacific for May 1994 (and possibly other months).</li> </ul> |  |  |  |  |
| 274 | This is caused by large view zenith angles in glint regions.                                         |  |  |  |  |
| 275 | 7. Product Access, Availability, and Future Development                                              |  |  |  |  |
| 276 | ISCCP H-Series data are available for July 1983 - December 2009 with plans for updates               |  |  |  |  |
| 277 | beginning in September 2017 that will extend the record back to 1982 and forward to 2015.            |  |  |  |  |
| 278 | The record will be operationally maintained with annual updates beginning in 2018. The NOAA          |  |  |  |  |
| 279 | Climate Data Record of the ISCCP H-Series product, Version v01r00 is archived and distributed        |  |  |  |  |
| 280 | by NCEI's satellite Climate Data Record Program. The ISCCP H-Series products are maintained          |  |  |  |  |
| 281 | by and available from NOAA. The full set of ISCCP CDR products, as well as the ancillary data,       |  |  |  |  |
| 282 | are available through the Hierarchical Data Storage System (HDSS) Archive System (HDS) at            |  |  |  |  |
| 283 | http://has.ncdc.noaa.gov . The processing code and the Climate Algorithm Theoretical Basis           |  |  |  |  |
| 284 | Document (C-ATBD), which more fully outlines ISCCP H-Series production, can be accessed from         |  |  |  |  |
| 285 | https://www.ncdc.noaa.gov/cdr/atmospheric/cloud-properties-isccp. The ISCCP H-Series Basic           |  |  |  |  |
| 286 | CDR product can be downloaded via FTP or from the NCEI THREDDS data server                           |  |  |  |  |
| 287 | (https://doi.org/10.7289/V5QZ281S). Users are also requested to register at                          |  |  |  |  |
| 288 | https://www.ncdc.noaa.gov/isccp.                                                                     |  |  |  |  |
| 289 |                                                                                                      |  |  |  |  |
| 290 | The future development of the ISCCP H-Series products includes the following options f in order      |  |  |  |  |
| 291 | of priority:                                                                                         |  |  |  |  |
| 292 | <ul> <li>Setting up the ISCCP system to process the newer geostationary and polar orbiter</li> </ul> |  |  |  |  |
| 293 | imagers (e.g., Himawari-8 and GOE S-R) to extend the data record through the present                 |  |  |  |  |
| 294 | with operational plans for annual updates.                                                           |  |  |  |  |





| 295 | <ul> <li>Improvements to satellite calibration particularly to increase the calibration consistency</li> </ul> |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 296 | between adjacent geostationary satellites.                                                                     |  |  |  |  |  |
| 297 | Continued efforts for backfilling missing data to develop a more complete record.                              |  |  |  |  |  |
| 298 |                                                                                                                |  |  |  |  |  |
| 299 | 8. Conclusions                                                                                                 |  |  |  |  |  |
| 300 | ISCCP H-Series data is now a component of NOAA's suite of Climate Data Records and will be                     |  |  |  |  |  |
| 301 | operationally produced and updated by NOAA NCEI. Research users are encouraged to use the                      |  |  |  |  |  |
| 302 | ISCCP products described herein to investigate cloud processes in weather and climate. The                     |  |  |  |  |  |
| 303 | ISCCP Basic product is suitable for software applications that allow for ease in viewing and                   |  |  |  |  |  |
| 304 | handling netcdf files (i.e., Weather Climate Toolkit, Panoply, ToolsUI, etc.). Future                          |  |  |  |  |  |
| 305 | improvements and versions will be driven by user requirements.                                                 |  |  |  |  |  |
| 306 |                                                                                                                |  |  |  |  |  |
| 307 | 9. Acknowledgements.                                                                                           |  |  |  |  |  |
| 308 | This project received funding from the NOAA/NCEI Climate Data Record Program. The authors                      |  |  |  |  |  |
| 309 | wish to thank D. Wunder, V. Toner, C. Hutchins, J. Buddai and the entire ISCCP Integrated                      |  |  |  |  |  |
| 310 | Product Team (IPT) at NCEI for supporting the Research to Operations (R2O) process. Special                    |  |  |  |  |  |
| 311 | appreciation goes to Alison Walker, Violeta Golea, and Cindy Pearl for their revisions of the                  |  |  |  |  |  |
| 312 | code and ancillary data products and the testing of the revisions from D to H.                                 |  |  |  |  |  |
| 313 |                                                                                                                |  |  |  |  |  |
| 314 | 10. References                                                                                                 |  |  |  |  |  |
| 315 | Armstrong, R. L., & Brodzik, M. J. (2005). Northern Hemisphere EASE-Grid weekly snow cover                     |  |  |  |  |  |
| 316 | and sea ice extent version 3. National Snow and Ice Data Center, Boulder, CO, digital                          |  |  |  |  |  |
| 317 | media.[Available online at http://nsidc. org/data/nsidc-0046. html.].                                          |  |  |  |  |  |
| 318 |                                                                                                                |  |  |  |  |  |
| 319 | Brown, R. D., & Robinson, D. A. (2011). Northern Hemisphere spring snow cover variability and                  |  |  |  |  |  |
| 320 | change over 1922–2010 including an assessment of uncertainty. The Cryosphere, 5(1), 219-229.                   |  |  |  |  |  |
| 321 |                                                                                                                |  |  |  |  |  |
| 322 | Cao, Changyong, and Andrew K. Heidinger. "Inter-comparison of the longwave infrared                            |  |  |  |  |  |
| 323 | channels of MODIS and AVHRR/NOAA-16 using simultaneous nadir observations at orbit                             |  |  |  |  |  |
| 324 | intersections." Earth Observing Systems VII. Vol. 4814. 2002.                                                  |  |  |  |  |  |





| 325 |                                                                                                      |
|-----|------------------------------------------------------------------------------------------------------|
| 326 | Chesters, D, A. Neuendorffer, 1991: Comparison between TOMS, TOVS, and DOBSON                        |
| 327 | observations: Satellite and surface views of total column ozone. Palaeogeography                     |
| 328 | Palaeoclimatology, 90, 61-67.                                                                        |
| 329 |                                                                                                      |
| 330 | Inamdar, A. K. and K. R. Knapp, 2015: Intercomparison of Independent Calibration Techniques          |
| 331 | Applied to the Visible Channel of the ISCCP B1 Data. J. Atmos. Oceanic Technol., 32, 1225–1240.      |
| 332 | doi: http://dx.doi.org/10.1175/JTECH-D-14-00040.1                                                    |
| 333 |                                                                                                      |
| 334 | Kinne, S., O'Donnel, D., Stier, P., Kloster, S., Zhang, K., Schmidt, H., & Stevens, B. (2013). MAC-  |
| 335 | v1: A new global aerosol climatology for climate studies. Journal of Advances in Modeling Earth      |
| 336 | Systems, 5(4), 704-740.                                                                              |
| 337 |                                                                                                      |
| 338 | Knapp, K. R., 2008: Scientific data stewardship of International Satellite Cloud Climatology         |
| 339 | Project B1 global geostationary observations. Journal of Applied Remote Sensing, 2, 023548,          |
| 340 | doi:10.1117/1.3043461                                                                                |
| 341 |                                                                                                      |
| 342 | Kroon, M., J.F. de Haan, J.P. Veefkind, L. Froidevaux, R. Wang, R. Kivi and J.J. Hakkarainen, 2011:  |
| 343 | Validation of operational ozone profiles from the Ozone Monitoring Instrument. J. Geophys.           |
| 344 | Res., 116, D18305, doi:10.1029/2010JD015100.                                                         |
| 345 |                                                                                                      |
| 346 | Liu, X., P.K. Bhartia, K. Chance, L. Froidevaux, R.J.D. Spurr and T.P. Kurosu, 2010: Validation of   |
| 347 | Ozone Monitoring Instrument ozone profiles and stratospheric ozone columns with Microwave            |
| 348 | Limb Sounder measurements. Atmos. Phys. Chem., 10(5), 2539-2549, doi:10.5194/acp-10-                 |
| 349 | 2539-2010.                                                                                           |
| 350 |                                                                                                      |
| 351 | Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L. W. M. J., & Merchant, J. |
| 352 | W. (2000). Development of a global land cover characteristics database and IGBP DISCover from        |
| 353 | 1 km AVHRR data. International Journal of Remote Sensing, 21(6-7), 1303-1330.                        |
|     |                                                                                                      |
|     | 13                                                                                                   |





| 354 |                                                                                                   |
|-----|---------------------------------------------------------------------------------------------------|
| 355 | Matthews, E. (1983). Global vegetation and land use: New high-resolution data bases for           |
| 356 | climate studies. Journal of climate and applied meteorology, 22(3), 474-487.                      |
| 357 |                                                                                                   |
| 358 | Neuendorffer, A.C., 1996: Ozone monitoring with TIROS-N operation vertical sounders. J.           |
| 359 | Geophys. Res., 101, D13, 18807-18828.                                                             |
| 360 |                                                                                                   |
| 361 | Rossow, W.B., and R.A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteorol.           |
| 362 | <i>Soc.</i> , <b>71</b> , 2-20.                                                                   |
| 363 |                                                                                                   |
| 364 | Rossow, W.B., and J. Ferrier, 2015: Evaluation of long-term calibrations of the AVHRR visible     |
| 365 | radiances. J. Atmos. Ocean. Technol., <b>32</b> , no. 4, 744-766, doi:10.1175/JTECH-D-14-00134.1. |
| 366 |                                                                                                   |
| 367 | Rossow, W.B., and R.A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull.         |
| 368 | Amer. Meteorol. Soc., 80, 2261-2288, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.         |
| 369 |                                                                                                   |
| 370 | Rossow, W. R.: Climate Data Record Program (CDRP): Climate Algorithm Theoretical Basis            |
| 371 | Document (C-ATBD) International Satellite Cloud Climatology Project (ISCCP) H-Series , CDRP-      |
| 372 | ATBD-0872, Asheville, Northl Carolina, USA, 179 pp., 2017.                                        |
| 373 |                                                                                                   |
| 374 | Rossow, W.B., and L.C. Garder, 1993a: Validation of ISCCP cloud detections. J. Climate, 6, 2370-  |
| 375 | 2393, doi:10.1175/1520-0442(1993)006<2370:VOICD>2.0.CO;2.                                         |
| 376 |                                                                                                   |
| 377 | Rossow, W.B., and L.C. Garder, 1993b: Validation of ISCCP cloud detections. J. Climate, 6, 2370-  |
| 378 | 2393, doi:10.1175/1520-0442(1993)006<2370:VOICD>2.0.CO;2.                                         |
| 379 |                                                                                                   |
| 380 | Rossow, W.B., A.W. Walker, and L.C. Garder, 1993: Comparison of ISCCP and other cloud             |
| 381 | amounts. J. Climate, 6, 2394-2418, doi:10.1175/1520-0442(1993)006<2394:COIAOC>2.0.CO;2.           |
| 382 |                                                                                                   |





- 383 Schiffer, R.A., and W.B. Rossow, 1983: The International Satellite Cloud Climatology Project
- 384 (ISCCP): The first project of the World Climate Research Programme. *Bull. Amer. Meteorol.*
- 385 Soc., **64**, 779-784.

386

- 387 Schiffer, R.A., and W.B. Rossow, 1985: ISCCP global radiance data set: A new resource for
- 388 climate research. Bull. Amer. Meteorol. Soc., 66, 1498-1505, doi:10.1175/1520-
- 389 0477(1985)066<1498:IGRDSA>2.0.CO;2.

390

- 391 Shi, L., Matthews, J. L., Ho, S. P., Yang, Q., & Bates, J. J. (2016). Algorithm development of
- 392 temperature and humidity profile retrievals for long-term HIRS observations. Remote
- 393 Sensing, 8(4), 280.
- 394
- 395 Stolarski, R.S., R. Bloomfield, R.D. McPeters and J.R. Herman, 1991: Total ozone trends deduced
- 396 from Nimbus 7 TOMS data. Geophys. Res. Lett., 18, 1015-1018.
- 397
- 398 Yan, S-K., S. Zhou and A.J. Miller, 2006: SMOBA: A 3-dimensional daily ozone analysis using
- 399 SBUV/2 & TOVS measurements
- 400 (http://www.cpc.noaa.gov/products/stratosphere/SMOBA/smoba\_doc.shtml)

401

402





404



405 406

407

408 409

**Figure 1**. ISCCP ten most cited papers that have contributed to the dataset's more than citations. The number of citations given here is based on Google Analytics.





410



## ISCCP Data Flow Overview

- 412 **Figure 2**. ISCCP Production data flow overview with satellite processing streams defined
- 413 for 5 geostationary data streams (GMS at 140°E, MET at 0°, GOE at 75°W, GOW at
- 414 135°W and INS at ~63°E). Left side of image, shows important steps in ISCCP H-Series
- 415 data processing that feed into the various products for HXS, HGS, HGG, HGH, and HGM.







416

Figure 3. January 2009 ISCCP Global Cloud Amount % for a) differences between H and
D series, b) H-Series HGM product at 1° and c) D-Series D2 product at 2.5°. As shown, in
a) the differences between the products are greatest in the polar and coastal regions
where for this case the H-Series product has a slightly higher cloud fraction. In general,
the distributions of cloud amount have good agreement.





429



**Figure 4**. Comparison ISCCP H- (blue) and D-Series (orange) and differences between Hand D- (black) monthly mean cloud fraction (%) for July 1983 through Dec. 2009 for a) global b) land, and c) water.





431 432

# List of Tables and Captions

|                            |         |                                 |                                                                                                                                                                                                                                                                           |                                                                                                                    | Product                                        |
|----------------------------|---------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                            | Version | Product                         | Description                                                                                                                                                                                                                                                               | Product Reference                                                                                                  | Resolution                                     |
| Atmospheric                | Н       | nnHIRS                          | Neural Network Analysis of High-resolution Infrared Radiometer Sounder                                                                                                                                                                                                    | Shi <i>et al.</i> 2016                                                                                             | 3-hourly global                                |
| Profiles                   |         |                                 |                                                                                                                                                                                                                                                                           |                                                                                                                    | equal-area grid                                |
|                            | D       | TOVS                            | Atmosphere and surface data including temperature structure, water, and<br>ozone abundances obtained from the TIROS Operational Vertical Sounding<br>(TOVS) Product and supplemented by two climatologies                                                                 |                                                                                                                    | Daily 280 km<br>equivalent equal-<br>area grid |
| AEROSOL                    | Н       | MACv.1                          | Merges surface based aerosol emission data from AERONET and satellite<br>products from MODIS and MISR, with the median results from an ensemble<br>of emission-transport models.                                                                                          | Kinne <i>et al.</i> 2013                                                                                           | Monthly 1°<br>equivalent equal-<br>area grid   |
|                            | D       | n/a                             |                                                                                                                                                                                                                                                                           |                                                                                                                    |                                                |
| OZONE<br>abundance         | н       | TOMS,<br>TOVS,<br>SMOBA,<br>OMI | Daily variations of the global distribution of total column ozone abundance<br>from a combination of satellite based instruments. Data is reported at 16<br>vertical levels.                                                                                              | Stolarski et al. 1981, Kroon<br>et al. 2011, Chesters et al.<br>1991, Neuendorffer et al.<br>1996, Yan et al. 2006 | daily 1°<br>equivalent equal-<br>area grid     |
|                            | D       | TOVS                            | The main data set used to produce a daily, global description of the ozone,<br>temperature and humidity distributions is that obtained from the analysis of<br>data from the TIROS Operational Vertical Sounder (TOVS) System. Data is<br>reported at 10 vertical levels. | ISCCP Science Team<br>doi: 10.5067/ISCCP/TOVS_NAT                                                                  | Daily 280 km<br>equivalent equal-<br>area grid |
| SNOW/ICE<br>cover fraction | Н       |                                 | Northern Hemisphere EASE-Grid Weekly Snow Cover and Sea Ice Extent<br>(Version3), NOAA NSIDC IMS Daily Northern Hemisphere Snow and Ice<br>Analysis, OSI-SAF Global Sea Ice Concentration Reprocessing Dataset, GLIMS<br>permanent glacier cover product                  | Brown and Robinson<br>2011, Amstrong <i>et al.</i> 2005                                                            | daily 0.25°<br>equivalent equal-<br>area grid  |
|                            | D       |                                 | Averages of snow and sea ice fractional coverage deduced from ship/shore<br>station reports and satellite visible, infrared, and microwave imagery data                                                                                                                   | ISCCP Science Team (1999)                                                                                          | 112 km equal area<br>grid, 5-days,<br>global   |
| SURFACETYPE                | н       |                                 | USGS EROS GTOPO30 product reconciled with the USGS Global Land 1-KM<br>AVHRR Project land-water mask                                                                                                                                                                      |                                                                                                                    | Fixed 0.25°<br>equivalent equal-<br>area grid  |
|                            | D       |                                 | CIA summary of what was known                                                                                                                                                                                                                                             |                                                                                                                    |                                                |
| ТОРО                       | н       |                                 | MODIS IGBP surface type classification                                                                                                                                                                                                                                    | Loveland <i>et al.</i> 2009                                                                                        | Fixed 0.10°<br>equivalent equal-<br>area grid  |







|   | D | Global Vegetation Types, 1971-1982 (Matthews) A global digital data base of vegetation was compiled at 1 degree latitude by 1 degree longitude resolution, drawing on approximately 100 published sources. | Matthews, 1983<br>doi:10.3334/ORNLDAAC/419 | Fixed 1.0° |
|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------|
| ; |   |                                                                                                                                                                                                            |                                            |            |

433

434 **Table 1:** List of H-Series and D-Series ancillary data products including in producing ISCCP Cloud and Surface Products.

435